What is the derivative of sec^2 2x?

1 Answer
Jan 5, 2016

4sec^2 2xtan2x

Explanation:

Use the chain rule. The first issue is the squared term.

d/dx(u^2)=2u*u'

d/dx(sec^2 2x)=2sec2x*d/dx(sec2x)

Use chain rule again:

d/dx(secu)=secutanu*u'

d/dx(sec^2 2x)=2sec2x*sec2xtan2x*d/dx(2x)

Since d/dx(2x)=2,

d/dx(sec^2 2x)=4sec^2 2xtan2x