What is the derivative of y= sec^3 x+ tan^2 x sec x?

1 Answer
Dec 19, 2017

dy/dx=(6sec^2x-1)secxtanx,

OR,

(6tan^2x+5)secxtanx.

Explanation:

Note that, y=sec^3x+tan^2xsecx,

=secx(sec^2x+tan^2x),

=secx{sec^2x+(sec^2x-1)},

=secx(2sec^2x-1).

:. y=2sec^3x-secx.

:. dy/dx=d/dx{2sec^3x-secx},

=2d/dx{(secx)^3}-d/dx{secx},

=2*3(secx)^2d/dx{secx}-d/dx{secx},

=6sec^2xd/dx{secx}-d/dx{secx},

=(6sec^2x-1)d/dx{secx},

rArr dy/dx=(6sec^2x-1)secxtanx,

or, what is the same as,

{6(tan^2x+1)-1}secxtanx=(6tan^2x+5)secxtanx.

Enjoy Maths.!