Try this: intxsqrt(x^2+8)dx=∫x√x2+8dx=
But d[x^2+8]=2xdxd[x2+8]=2xdx
So: 1/2intsqrt(x^2+8)d[x^2+8]=12∫√x2+8d[x2+8]= =1/2int(x^2+8)^(1/2)d[x^2+8]=1/2((x^2+8)^(3/2))/(3/2)=12∫(x2+8)12d[x2+8]=12(x2+8)3232
Between 00 and 11: =1/3(x^2+8)^(3/2)|_0^1=13(x2+8)32∣∣∣10=9-8/3sqrt(8)=9-16/3sqrt(2)9−83√8=9−163√2