What is the integral of e^(2x)e2x?

2 Answers
May 2, 2018

The answer

inte^(2x)*dx=1/2[e^(2x)]+ce2xdx=12[e2x]+c

Explanation:

show below

inte^(2x)*dx=1/2int2*e^(2x)*dx=1/2[e^(2x)]+ce2xdx=122e2xdx=12[e2x]+c

May 3, 2018

1/2e^(2x)+C12e2x+C

Explanation:

Given: inte^(2x) \ dx.

We can manipulate as follows:

inte^(2x) \ dx

=int1/2*2e^(2x) \ dx

=1/2int2e^(2x) \ dx

Now, let u=2x,:.du=2 \ dx,dx=(du)/2

=1/2int2e^u*(du)/2

=1/2inte^u \ du

=1/2e^u+C

Replace back u=2x to get the final integral:

=1/2e^(2x)+C