What is the integral of #(e^(2x))/(1+e^(2x))#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Jim H Apr 3, 2015 #1/2 ln (1+e^(2x))+C# #int e^(2x)/(1+e^(2x) dx# Integrate by substitution. Let #u=1+e^(2x)#. Thsi makes #du = 2e^(2x)# #int e^(2x)/(1+e^(2x)) dx = 1/2 int 1/u du = 1/2 ln abs u +C# #= 1/2 ln (1+e^(2x)) +C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 27896 views around the world You can reuse this answer Creative Commons License