What is the integral of e^(-x^2)?

1 Answer
Mar 19, 2018

-1/(2x)int(-2x*e^(-x^2))=-1/(2x)*(e^(-x^2)+lambda), lambda in RR

Explanation:

First We should change the expression into our int.
We know that int(u'e^u) =e^u+lambda, lambda in RR.
int(e^(-x^2)) =-1/(2x)int(-2x*e^(-x^2))
Now We can integrate it properly. (here, u=-x^2 <=> u'=-2x)

-1/(2x)int(-2x*e^(-x^2))=-1/(2x)*(e^(-x^2)+lambda)