What is the limit as x approaches 0 of #x/arctan(4x)#?

2 Answers
Jul 16, 2018

#lim_(xto0) x/(arc tan4x)=1/4#

Explanation:

We know that ,

#color(red)((1)lim_(theta to0)(sintheta)/theta=1#

#color(red)((2)lim_(theta to0) costheta=1#

We take ,

#L=lim_(xto0) x/(arc tan4x)#

Let , #color(blue)(arctan4x=y=>4x=tany=>x=1/4tany#

#=>color(blue)(xto0 =>y=arctan(0)=>yto0#

#=>L=lim_(yto0)(1/4tany)/y#

#=>L=1/4lim_(yto0)(siny/cosy)/y#

#=>L=1/4lim_(yto0)siny/y*1/(lim_(yto0)cosy)to color(red)(Apply(1)and(2)#

#L=1/4(1)(1/cos0)#

#L=1/4#

Jul 16, 2018

#1/4#

Explanation:

Since #lim_{xto 0}(4x)/(arctan(4x))=1# we get

#lim_{xto 0}x/arctan(4x)=1/4#
By L'Hospital we get

#lim_(xto 0) (x)/arctan(4x)=lim_(x to 0)4/((1/(1+16x^2))*4)=lim_(x to 0)1+16x^2=1#