What is the limit of (1+e^x)^(1/x)(1+ex)1x as x approaches infinity?

1 Answer
Nov 29, 2016

lim_(x->oo)(1+e^x)^(1/x) = e

Explanation:

lim_(x->oo)(1+e^x)^(1/x) = lim_(x->oo)e^ln((1+e^x)^(1/x))

=lim_(x->oo)e^(ln(1+e^x)/x)

=e^(lim_(x->oo)ln(1+e^x)/x)

The above step is valid due to the continuity of f(x)=e^x

Evaluating the limit in the exponent, we have

lim_(x->oo)ln(1+e^x)/x

=lim_(x->oo)(d/dxln(1+e^x))/(d/dxx)

The above step follows from apply L'Hopital's rule to a oo/oo indeterminate form

=lim_(x->oo)(e^x/(1+e^x))/1

=lim_(x->oo)e^x/(1+e^x)

=lim_(x->oo)1/(1+1/e^x)

=1/(1+1/oo)

=1/(1+0)

=1

Substituting this back into the exponent, we get our final result:

lim_(x->oo)(1+e^x)^(1/x) = e^(lim_(x->oo)ln(1+e^x)/x)

=e^1

=e