What is the limit of 1/sqrt(x^2 + 1)-x as x goes to infinity?

1 Answer
Sep 16, 2015

lim_(xrarroo) 1/sqrt(x^2 + 1)-x = -oo and
lim_(xrarroo) 1/(sqrt(x^2 + 1)-x) = oo

Explanation:

I'm not sure the question is typed correctly, so I'll give solutions to both possibilities.

lim_(xrarroo) 1/sqrt(x^2 + 1)-x = lim_(xrarroo) 1/sqrt(x^2 + 1)-lim_(xrarroo)x

= 0- lim_(xrarroo) x = -oo

And

lim_(xrarroo) 1/(sqrt(x^2 + 1)-x) = lim_(xrarroo) 1/((sqrt(x^2 + 1)-x)) ((sqrt(x^2 + 1)+x))/((sqrt(x^2 + 1)+x))

= lim_(xrarroo) (sqrt(x^2 + 1)+x)/(x^2+1-x^2)

= lim_(xrarroo) (sqrt(x^2 + 1)+x)

= lim_(xrarroo) sqrt(x^2 + 1)+ lim_(xrarroo)x

= oo+oo=oo