What is the limit of (-2x+1)/sqrt(x^2 +x) as x goes to infinity?

1 Answer
Sep 16, 2015

lim_(xrarroo)(-2x+1)/sqrt(x^2 +x) = -2 (and lim_(xrarr-oo)(-2x+1)/sqrt(x^2 +x) = 2)

Explanation:

(-2x+1)/sqrt(x^2 +x) = (x(-2+1/x))/(sqrt(x^2)sqrt(1+1/x)

= (x(-2+1/x))/(absxsqrt(1+1/x))

When we find the limit as xrarroo, we are concerned with positive values of x, so we have:

lim_(xrarroo)(-2x+1)/sqrt(x^2 +x) = lim_(xrarroo) (x(-2+1/x))/(absxsqrt(1+1/x))

= lim_(xrarroo) (x(-2+1/x))/(xsqrt(1+1/x))

= lim_(xrarroo) (-2+1/x)/sqrt(1+1/x) =-2

For limit as xrarr-oo

we use the fact the for negative values of x

sqrt(x^2) = absx = -x, to get

lim_(xrarr-oo)(-2x+1)/sqrt(x^2 +x) = lim_(xrarr-oo) (x(-2+1/x))/((-x)sqrt(1+1/x))

= lim_(xrarr-oo) (-2+1/x)/-sqrt(1+1/x) =2

Here is the graph, so we can see the two horizontal asymptotes.

You can zoom in and out and drag the graph using a mouse.

graph{(-2x+1)/sqrt(x^2 +x) [-25.9, 31.81, -14.4, 14.46]}