What is the limit of (3x^2+20x)/(4x^2+9) as x goes to infinity?

2 Answers
Oct 10, 2015

lim_(xrarroo)(3x^2+20x)/(4x^2+9)=3/4

Explanation:

(3x^2+20x)/(4x^2+9) = (x^2(3+20/x))/(x^2(4+9/x^2)) for x != 0

= (3+20/x)/(4+9/x^2) for x != 0.

As xrarroo, we get 20/x rarr0 and 9/x^2 rarr 0, so we have

lim_(xrarroo)(3x^2+20x)/(4x^2+9) = lim_(xrarroo)(3+20/x)/(4+9/x^2) =3/4

Oct 10, 2015

3/4

Explanation:

lim_(x->oo) (3x^2+20x)/(4x^2+9) = lim_(x->oo) ((3x^2)/x^2+(20x)/x^2)/((4x^2)/x^2+9/x^2)= lim_(x->oo) (3+20/x)/(4+9/x^2)=3/4

Note:

20/x->0 when x->oo

9/x^2->0 when x->oo