What is the limit of (x^3 - 2x +3) / (5-2x^2) as x goes to infinity?

1 Answer
Oct 23, 2015

lim_(xrarroo) (x^3 - 2x +3) / (5-2x^2) = -oo

Explanation:

lim_(xrarroo) (x^3 - 2x +3) / (5-2x^2) has indeterminate form oo/oo.

For all x !=0 we get (x^3 - 2x +3) / (5-2x^2)= (x^2(x-2/x+3/x^2))/(x^2(5/x^2-2))

So
lim_(xrarroo) (x^3 - 2x +3) / (5-2x^2) =lim_(xrarroo) (x-2/x+3/x^2)/(5/x^2-2) =oo/-2 = -oo