What is the limit of (x +sqrt((x^2)+(3x))) as x goes to infinity?
2 Answers
Explanation:
= x +sqrt(x^2)sqrt(1+3/x)) forx != 0
= x +absx sqrt(1+3/x)) forx != 0
Now, as
So,
Bonus
As
As
We think of
= (-3x)/(x-absx sqrt(1+3/x)) .
For
= lim_(xrarr-oo)(-3x)/(x+xsqrt(1+3/x))
= lim_(xrarr-oo)(-3)/(1+sqrt(1+3/x))
= -3/2 .
Explanation:
sqrt(x^2+3x) >= 0 for allx >= 0
So
lim_(x->+oo) (x+sqrt(x^2+3x)) >= lim_(x->+oo) x = +oo
Much more interesting is the case
First notice that
To see this: Given
(t-epsilon)^2 = t^2 - 2tepsilon + epsilon^2
So if
(t-epsilon)^2 = t^2 - 2tepsilon + epsilon^2 < t^2 - (C +epsilon^2) + epsilon^2 = t^2 - C
So
t-epsilon < sqrt(t^2-C) < sqrt(t^2) = t
Let
Then:
0 = lim_(t->oo) (sqrt(t^2-C) - t)
= lim_(x->-oo) (sqrt((x+3/2)^2 - 9/4) + x + 3/2)
= lim_(x->-oo) (sqrt(x^2+3x+9/4 - 9/4) + x + 3/2)
= lim_(x->-oo) (sqrt(x^2+3x) + x + 3/2)
= lim_(x->-oo) (sqrt(x^2+3x) + x) + 3/2
Hence:
lim_(x->-oo) (sqrt(x^2+3x) + x) = -3/2