What is the limit of (x +sqrt((x^2)+(3x))) as x goes to infinity?

2 Answers
Oct 6, 2015

lim_(xrarroo) (x +sqrt(x^2+3x)) = oo

Explanation:

(x +sqrt(x^2+3x)) = x +sqrt(x^2(1+3/x)) for x != 0

= x +sqrt(x^2)sqrt(1+3/x)) for x != 0

= x +absx sqrt(1+3/x)) for x != 0

Now, as xrarroo, we have

absx rarroo and

sqrt(1+3/x) rarr sqrt(1+0) = 1

So,

lim_(xrarroo) (x +sqrt(x^2+3x)) = lim_(xrarroo) (x +absx sqrt(1+3/x)) = oo

Bonus

As x decreases without bound, the limit is quite different.

As x rarr -oo, we get indeterminate form: -oo+oo.

We think of (x +sqrt(x^2+3x)) as a ratio (over 1) and eliminate the square root from the numerator.

(x +sqrt(x^2+3x)) * (x -sqrt(x^2+3x)) /(x -sqrt(x^2+3x)) = (-3x)/(x -sqrt(x^2+3x))

= (-3x)/(x-absx sqrt(1+3/x)).

For x < 0, we have absx = -x, so we have:

lim_(xrarr-oo)(x +sqrt(x^2+3x)) = lim_(xrarr-oo)(-3x)/(x-absx sqrt(1+3/x))

= lim_(xrarr-oo)(-3x)/(x+xsqrt(1+3/x))

= lim_(xrarr-oo)(-3)/(1+sqrt(1+3/x))

= -3/2.

Oct 6, 2015

lim_(x->+oo) (x+sqrt(x^2+3x)) = +oo
lim_(x->-oo) (x+sqrt(x^2+3x)) = -3/2

Explanation:

sqrt(x^2+3x) >= 0 for all x >= 0

So

lim_(x->+oo) (x+sqrt(x^2+3x)) >= lim_(x->+oo) x = +oo

Much more interesting is the case lim_(x->-oo) (x+sqrt(x^2+3x))

First notice that lim_(t->oo) (t - sqrt(t^2-C)) = 0 for any constant C > 0

To see this: Given epsilon > 0

(t-epsilon)^2 = t^2 - 2tepsilon + epsilon^2

So if t > (C+epsilon^2)/(2epsilon), then

(t-epsilon)^2 = t^2 - 2tepsilon + epsilon^2 < t^2 - (C +epsilon^2) + epsilon^2 = t^2 - C

So

t-epsilon < sqrt(t^2-C) < sqrt(t^2) = t

Let t = -(x+3/2) and C = 9/4

Then:

0 = lim_(t->oo) (sqrt(t^2-C) - t)

= lim_(x->-oo) (sqrt((x+3/2)^2 - 9/4) + x + 3/2)

= lim_(x->-oo) (sqrt(x^2+3x+9/4 - 9/4) + x + 3/2)

= lim_(x->-oo) (sqrt(x^2+3x) + x + 3/2)

= lim_(x->-oo) (sqrt(x^2+3x) + x) + 3/2

Hence:

lim_(x->-oo) (sqrt(x^2+3x) + x) = -3/2