What is the null space of an invertible matrix?

1 Answer
Jul 17, 2017

{ underline(0) }

Explanation:

If a matrix M is invertible, then the only point which it maps to underline(0) by multiplication is underline(0).

For example, if M is an invertible 3xx3 matrix with inverse M^(-1) and:

M((x),(y),(z)) = ((0),(0),(0))

then:

((x),(y),(z)) = M^(-1)M((x),(y),(z)) = M^(-1)((0),(0),(0)) = ((0),(0),(0))

So the null space of M is the 0-dimensional subspace containing the single point ((0),(0),(0)).