What is the square root of -10 times the root of -40?

2 Answers
Sep 20, 2015

sqrt(-10)sqrt(-40) = -201040=20

Explanation:

sqrt(-10)sqrt(-40) =1040=
(sqrt(-10))(sqrt(-40))=(10)(40)=

You can't simply join the roots together, like sqrt(x)sqrt(y) = sqrt(xy)xy=xy, because that formula only works if xx and yy aren't both negative. You have to take the negative out of the root first and then multiply then, using the identity i^2 = -1i2=1 where ii is the imaginary unit, we continue like:

(sqrt(-1)sqrt(10))(sqrt(-1)sqrt(40))=(110)(140)=
(isqrt(10))(isqrt(40))=(i10)(i40)=
(i^2sqrt(10)sqrt(40))=(i21040)=
-sqrt(40*10)=4010=
-sqrt(4*100)=4100=
-2020

Sep 20, 2015

sqrt(-10)sqrt(-40) = -201040=20

Explanation:

Use these two complex number definitions/rules to simplify the expression: sqrt(-1) = i1=i, and i^2 =sqrt(-1)^2= -1i2=12=1

sqrt(-10)sqrt(-40) = 1040=
sqrt(-1*10)sqrt(-1*4*10) = 1101410=
sqrt(-1)sqrt(10)sqrt(-1)sqrt(4)sqrt(10) = 1101410=
sqrt(-1)^2 2 sqrt(10)^2 = 122102=
-1*2*10 = -201210=20