How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ?

2 Answers
May 19, 2018

\frac{1}{2}

Explanation:

The limit presents an undefined form 0/0. In this case, you may use de l'hospital theorem, that states

lim \frac {f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}

The derivative of the numerator is

\frac{1}{2sqrt(1+h)}

While the derivative of the denominator is simply 1.

So,

\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \frac{\frac{1}{2sqrt(1+h)}}{1} =\lim_{x\to 0} \frac{1}{2sqrt(1+h)}

And thus simply

\frac{1}{2sqrt(1)}=\frac{1}{2}

May 19, 2018

= 1/2

Explanation:

If you are unaware of l'hopitals rule...

Use:

(1+x)^n = 1 + nx + (n(n-1))/(2!) x^2 + ...

=> (1 + h)^(1/2) = 1 + 1/2h - 1/8 h^2 + ...

=> lim_( h to 0) ((1 + 1/2 h - 1/8h^2 + ...) - 1 )/ h

=> lim_( h to 0) ( 1/2 h - 1/8h^2 + ... )/ h

=> lim_( h to 0) ( 1/2 - 1/8 h + ... )

= 1/2