We first write the quantity under square root as follows
#−x² + 14x
= −(x² − 14x + 49 − 49)
= −(x² − 14x + 49) − (−49)
= 49 − (x − 7)²#
Use a substitution:
#x − 7 = 7 sinu =>dx = 7 cosu du#
Hence the integral becomes
#int sqrt(14x−x²) dx = int sqrt(49 − (x − 7)²) dx
= int sqrt(49 − 49 sin²u) * 7 cosu du
= ∫ 7 cosu * 7 cosu du
= 49 ∫ cos²u du
= 49 ∫ (1/2 + 1/2 cos(2u)) du
= 49 (1/2 u + 1/4 sin(2u)) + c
= 49 (1/2 u + 1/4 * 2 sinu cosu) +c
= 49 (1/2 u + 1/2 sinu cosu) + c
= 49 * 1/2 (u + sinu cosu) + c#
Now we substitute back:
#sinu = (x−7)/7#
#cosu = sqrt(1−sin²u) = sqrt(1−((x−7)/7)²) = sqrt((49−(x−7)²)/49) = sqrt(14x−x²)/7 #
Hence we have
#49/2 (arcsin((x−7)/7) + (x−7)/7 * sqrt(14x−x²)/7) + c
= 49/2 arcsin((x−7)/7) + 1/2 (x−7) sqrt(14x−x²) + c#