What is #int cos^6x dx#?

1 Answer
Jan 30, 2016

#int cos^6 x dx = 5/16 x + 1/4 sin 2x + 3/16 sin 4x -1/48 sin^3 2x#

Explanation:

#int cos^6x dx#

We can rewrite this function as;

#int (cos^2x)^3dx#

Now we can rewrite #cos^2 x# using the half angle formula.

#int(1/2(1+cos(2x)))^3 dx#

If we expand the expression we can get rid of the exponent.

#1/8 int (1 + 3cos(2x) + 3cos^2 (2x) + cos^3 (2x) )dx #

We can split up this expression using the sum rule.

#1/8 int dx + 3/8 int cos (2x) dx + 3/8 int cos^2 (2x) dx + 1/8 int cos^3 (2x) dx#

The first integral is pretty straight forward. For the second, use the substitution #u=2x, du = 2dx#.

#1/8x + 3/16 sin (2x) + 3/8 int cos^2 (2x) dx + 1/8 int cos^3 (2x) dx #

The remaining integrals are a little more involved.


We can use the half angle formula again to simplify the 3rd integral.

#int cos^2 (2x) dx = int 1/2(1+ cos(4x)) dx#

#= 1/2 int dx + 1/2 int cos(4x) dx#

Use substitution again to solve the second integral.

#1/2 x + 1/8 sin (4x) #


The last integral should be split up first.

# int cos^3 (2x) dx = int cos^2 (2x) cos (2x) dx #

Now we can use the Pythagorean theorem to replace #cos^2(2x)#.

#int (1-sin^2 (2x)) cos (2x) dx #

#int cos (2x) dx - int sin^2 (2x) cos (2x) dx #

#1/2 sin (2x) - int sin^2 (2x) cos (2x) dx #

To solve the remaining integral, use the substitution #u=sin (2x), du = 2 cos (2x) dx #.

#1/2 sin (2x) - 1/6 sin^3 (2x) #


Plug the solved integrals into the original expression to get;

#1/8x + 3/16 sin 2x + 3/8(1/2 x + 1/8 sin 4x ) + 1/8(1/2 sin 2x - 1/6 sin^3 2x)#

Simplify by combining like terms.

#5/16 x + 1/4 sin 2x + 3/16 sin 4x -1/48 sin^3 2x#