Question #101d6

3 Answers
Jan 11, 2017

(I)=1/4sec^3xtanx+3/8secxtanx+3/8ln|(secx+tanx)|+C

Explanation:

intsec^5xdx

The trick here is to split the sec^5x and use parts

I=intuv'=uv-intvu'dx

color(red)(I=intsec^5xdx)=intsec^3xsec^2xdx

u=sec^3x=>du=3sec^3xtanxdx

v'=sec^2x=>v=tanx

I=sec^3xtanx-int3sec^3xtan^2xdx

color(red)(I)=sec^3xtanx-int3sec^3x(sec^2x-1)dx

color(red)(I)=sec^3xtanx-int(3sec^5x-3sec^3x)dx

color(red)(I)=sec^3xtanx-3color(red)(intsec^5xdx)+3intsec^3xdx

color(red)(I)=sec^3xtanx-3color(red)(I)+3intsec^3xdx

color(red)(4I)=sec^3xtanx+3intsec^3xdx-------(1)

--------------

color(blue)(intsec^3xdx)

IBP once more

u=secx=>u'=secxtanx

v'=sec^2x=>v=tanx

I_2=secxtanx-intsecxtan^2xdx

I_2=secxtanx-intsecx(sec^2x-1)dx

I_2=secxtanx-(intsec^3x-secx)dx

I_2=secxtanx-I_2+intsecxdx

2I_2=secxtanx+intsecxdx

2I_2=secxtanx+ln|(secx+tanx)|

I_2=1/2(secxtanx+ln|(secx+tanx)|)

now substitute this back into (1)
--------------

4I=sec^3xtanx+3/2(secxtanx+ln|(secx+tanx)|)+C

(I)=1/4sec^3xtanx+3/8secxtanx+3/8ln|(secx+tanx)|+C

Mar 4, 2017

1/4sec^3xtanx+3/8ln|secx+tanx|+3/8secxtanx+C.

Explanation:

Let us deal with the Problem in a more 8general way, by finding

I_n=intsec^nxdx, n in NN.

Prior to proceeding for I_n, let us note that,

(1) : I_1=intsecxdx=ln|secx+tanx|+c.

(2) : I_2=intsec^2xdx=tanx+c.

For ngt2, I_n=intsec^nxdx=intsec^(n-2)sec^2xdx, we use the

IBP :intuvdx=uintvdx-int{((du)/dx)intvdx}dx.

u=sec^(n-2)x rArr (du)/dx={(n-2)sec^(n-3)x}{d/dxsecx}

={(n-2)sec^(n-3)}{secxtanx}=(n-2)sec^(n-2)xtanx.

v=sec^2x rArr intvdx=tanx.

:. I_n=sec^(n-2)xtanx-int[{(n-2)sec^(n-2)xtanx}(tanx)]dx

=sec^(n-2)xtanx-(n-2)intsec^(n-2)xtan^2xdx

=sec^(n-2)xtanx-(n-2)int{(sec^(n-2)x)(sec^2x-1)}dx

=sec^(n-2)xtanx-(n-2)int{sec^nx-sec^(n-2)}dx, i.e.,

I_n=sec^(n-2)xtanx-(n-2)I_n+(n-2)I_(n-2)

rArr {1+(n-2)}I_n-(n-2)I_(n-2)=sec^(n-2)xtanx, or,

(n-1)I_n-(n-2)I_(n-2)=sec^(n-2)xtanx+c, (ngt2, n in NN.)

Though we have derived the Formula, known as, Reduction

Formula, for I_n, ngt2, let us check it for n=2.

:. (2-1)I_2-(2-2)I_0=sec^0xtanx rArr I_2=tanx+c.

Hence, I_n holds good for n ge 2, n in NN.

Finally, taking n=5 in I_n=I_5=intsec^5xdx, we have,

4I_5-3I_3=sec^3xtanx+c_1......(i)

n=3 rArr 2I_3-1I_1=secxtanx+c_2

rArr 2I_3=ln|secx+tanx|+secxtanx+c_2,...[because,(1)]

rArr I_3=1/2ln|secx+tanx|+1/2secxtanx+c_2'.........(ii)

:. 4I_5=3(1/2ln|secx+tanx|+1/2secxtanx)+sec^3xtanx

:. I_5=1/4[sec^3xtanx+3/2ln|secx+tanx|+3/2secxtanx]

I_5=1/4sec^3xtanx+3/8ln|secx+tanx|+3/8secxtanx+C.

Mar 7, 2017

My apologies, I answered this for the wrong function. Try using a similar method for the given function and see if you can get the right answer.

Explanation:

We can also use the hyperbolic trigonometric functions sinh(x) and cosh(x) to solve this integral.

Notice the similarity in the following identities:

{(tan^2(x)+1=sec^2(x)),(sinh^2(u)+1=cosh^2(u)):}

So if we use the substitution tan(x)=sinh(u) then it's also true that sec(x)=cosh(u).

These imply, respectively, that sec^2(x)dx=cosh(u)du and sec(x)tan(x)dx=sinh(u)du.

Then:

intsec^3(x)dx=intsec(x)(sec^2(x)dx)=intcosh(u)(cosh(u)du)

We can use the identity cosh(2u)=2cosh^2(u)-1, identical to its non-hyperbolic analog, to say that cosh^2(u)=1/2(cosh(2u)+1).

=1/2int(cosh(2u)+1)du

These are both found easily:

=1/2(1/2sinh(2u)+u)

The problem then becomes turning these back into expressions of x.

First note that:

1/2sinh(2u)=1/2(2sinh(u)cosh(u))=sinh(u)cosh(u)=tan(x)sec(x)

Also note that sinh(x)=(e^x-e^-x)/2 so:

sinh(u)=(e^u-e^-u)/2=tan(x)

Solving for u yields:

e^u-e^-u=2tan(x)

Multiplying through by e^u and reordering:

e^(2u)-e^u(2tan(x))=1

Completing the square as a polynomial with base e^u:

e^(2u)-e^u(2tan(x))+tan^2(x)=1+tan^2(x)

Using the trig identity between secant and tangent:

(e^u-tan(x))^2=sec^2(x)

e^u=abs(sec(x)+tan(x))

u=lnabs(sec(x)+tan(x))

Then the original integral is:

intsec^3(x)dx=1/2(1/2sinh(2u)+u)

color(white)(intsec^3(x)dx)=(tan(x)sec(x)+lnabs(sec(x)+tan(x)))/2+C