Question #8e80d

1 Answer
Apr 7, 2017

The limit diverges

Explanation:

Recall,

lim_(x->a)[f(x)*g(x)]=lim_(x->a)f(x)*lim_(x->a)g(x)

Apply and evaluate the limit from above,

lim_(x->0)(lnx*cotx)=lim_(x->0+)(lnx)*lim_(x->0+)(cotx)

Evaluate,

lim_(x->0+)(lnx)=-oo

lim_(x->0+)(cotx)=oo

Therefore,

(-oo)*(oo)

-oo

Apply and evaluate the limit below,

lim_(x->0)(lnx*cotx)=lim_(x->0-)(lnx)*lim_(x->0-)(cotx)

lim_(x->0-)(lnx)=-oo

lim_(x->0-)(cotx)=-oo

Evaluate,

(-oo)*(-oo)

=oo

Since the limit from the above tends towards -oo and the limit from below is oo. Therefore the limit diverges.