How do you differentiate y=(t^2+2)/(t^4-3t^2+1)?

1 Answer
Jul 2, 2017

y'=(-2t^5-8t^3+14t)/((t^4-3t^2+1)^2)

Explanation:

We know the following rule for the derivative of the ratio:

y=f(t)/g(t)->y'=(f'(t)*g(t)-f(t)*g'(t))/g^2(t)

Let's apply it to:

y=(t^2+2)/(t^4-3t^2+1)

Then

y'=(2t*(t^4-3t^2+1)-(t^2+2)(4t^3-6t))/((t^4-3t^2+1)^2)

Let's expand the numerator:

y'=(2t^5cancel(-6t^3)+2t-4t^5cancel(+6t^3)-8t^3+12t)/((t^4-3t^2+1)^2)

and sum the like terms:

y'=(-2t^5-8t^3+14t)/((t^4-3t^2+1)^2)