How do you find the derivative of (x^8(x-23)^(1/2))/(27x^6(4x-6)^8)x8(x23)1227x6(4x6)8?

1 Answer
Dec 8, 2017

=(x^8(432x^5(4x-6)^8(x-23)^(1/2)+(x-23)^(-1/2)-2x^4(x-23)^(1/2)(54x^5(3(4x-6)^8+16x(4x-6)^7))))/(2(27x^6(4x-8)^8)^2=x8(432x5(4x6)8(x23)12+(x23)122x4(x23)12(54x5(3(4x6)8+16x(4x6)7)))2(27x6(4x8)8)2

Explanation:

y=(x^8(x-23)^(1/2))/(27x^6(4x-6)^8)=f(x)/g(x)y=x8(x23)1227x6(4x6)8=f(x)g(x)

dy/dx=(f'(x)g(x)-f(x)g'(x))/(f(x)^2)

f(x)=x^8(x-23)^(1/2)=h(x)j(x)
f'(x)=h'(x)j(x)+h(x)j'(x)
h(x)=x^8
h'(x)=8x^7
j(x)=(x-23)^(1/2)
j'(x)=(x-23)^(-1/2)/2
f'(x)=8x^7(x-23)^(1/2)+(x^8(x-23)^(-1/2))/2=(16x^7(x-23)^(1/2)+x^8(x-23)^(-1/2))/2=(16x^7(x-23)^(1/2)+x^8(x-23)^(-1/2))/2

g(x)=27x^6(4x-6)^8=a(x)s(x)
g'(x)=a'(x)s(x)+a(x)s'(x)
a(x)=27x^6
a'(x)=162x^5
s(x)=(4x-6)^8
s'(x)=4*8*(4x-6)^7=32(4x-6)^7
g'(x)=162x^5(4x-6)^8+27x^6 32(4x-6)^7=162x^5(4x-6)^8+864x^6(4x-6)^7=54x^5(3(4x-6)^8+16x(4x-6)^7)

dy/dx=(27x^6(4x-6)^8((16x^7(x-23)^(1/2)+x^8(x-23)^(-1/2))/2)-x^8(x-23)^(1/2)(54x^5(3(4x-6)^8+16x(4x-6)^7)))/(27x^6(4x-6)^8)^2
=(((27x^6(4x-6)^8 16x^7(x-23)^(1/2)+x^8(x-23)^(-1/2))/2)-x^8(x-23)^(1/2)(54x^5(3(4x-6)^8+16x(4x-6)^7)))/(27x^6(4x-6)^8)^2
=(27x^6(4x-6)^8 16x^7(x-23)^(1/2)+x^8(x-23)^(-1/2)-2x^8(x-23)^(1/2)(54x^5(3(4x-6)^8+16x(4x-6)^7)))/(2(27x^6(4x-6)^8)^2)
=(x^8(432x^5(4x-6)^8(x-23)^(1/2)+(x-23)^(-1/2)-2x^4(x-23)^(1/2)(54x^5(3(4x-6)^8+16x(4x-6)^7))))/(2(27x^6(4x-8)^8)^2