Question #f3bd9

1 Answer
Feb 3, 2018

#int\ (1-sin^4(2x))/cos^4(2x)\ dx=tan(2x)-x+C#

Explanation:

First, we can use the difference of squares formula:
#(a+b)(a-b)=a^2-b^2#

Applying this to the numerator, we get:
#int\ (1-sin^4(2x))/cos^4(2x)\ dx=int\ ((1+sin^2(2x))(1-sin^2(2x)))/cos^4(2x)\ dx#

Next we can use the Pythagorean identity to turn #1-sin^2(2x)# into #cos^2(2x)#:
#int\ ((1+sin^2(2x))cos^2(2x))/cos^4(2x)\ dx=int\ (1+sin^2(2x))/cos^2(2x)\ dx#

Now we can split the fraction into two:
#int\ (1+sin^2(2x))/cos^2(2x)\ dx=int\ 1/cos^2(2x)\ dx+int\ sin^2(2x)/cos^2(2x)\ dx#

I will call the left one Integral 1 and the right one Integral 2

Integral 1
We can use the following identity to rewrite the integral:
#1/cos(theta)=sec(theta)#

#int\ 1/cos^2(2x)\ dx=int\ sec^2(2x)\ dx#

We can now introduce a quick u-substitution with #u=2x#, and divide by #2# to integrate with respect to #u#:
#1/2int\ sec^2(u)\ du#

This is the familiar derivative of #tan(u)#:
#1/2int\ sec^2(u)\ du=1/2tan(u)+C=1/2tan(2x)+C#

Integral 2
We can first use the following identity to rewrite the integral in terms of #tan#:
#sin(theta)/cos(theta)=tan(theta)#

#int\ sin^2(2x)/cos^2(2x)\ dx=int\ tan^2(2x)\ dx#

We can now use this identity to rewrite the integral:
#tan^2(theta)=sec^2(theta)-1#

This gives:
#int\ tan^2(2x)\ dx=int\ sec^2(2x)-1\ dx#

We already worked out the left part in Integral 1, and the right part is just equal to #x#:
#int\ sec^2(2x)-1\ dx=1/2tan(2x)-x+C#

Completing the original integral
Now that we know Integral 1 and Integral 2, we can plug them into our original integral to get the final answer:
#int\ (1-sin^4(2x))/cos^4(2x)\ dx=1/2tan(2x)+1/2tan(2x)-x+C=#

#=tan(2x)-x+C#