How do you find the antiderivative of #Cosx/Sin^2x#?

2 Answers
Mar 11, 2018

#-cosecx+C#

Explanation:

#I=intcosx/sin^2xdx=int1/sinx*cosx/sinxdx#
#I=intcscx*cotxdx=-cscx+C#

Mar 11, 2018

#int\ cos(x)/sin^2(x)\ dx=-csc(x)+C#

Explanation:

#int\ cos(x)/sin^2(x)\ dx#

The trick to this integral is a u-substitution with #u=sin(x)#. We can see this is the right way to go because we've got the derivative of #u#, #cos(x)# in the denominator.

To integrate with respect to #u#, we need to divide by the derivative, #cos(x)#:

#int\ cos(x)/sin^2(x)\ dx=int\ cancel(cos(x))/(cancel(cos(x))u^2)\ du=int\ 1/u^2\ du=int\ u^-2\ du#

We can evaluate this integral using the reverse power rule:

#int\ x^n\ dx=x^(n+1)/(n+1)#

#int\ u^-2\ du=u^-1/(-1)+C=-1/u+C#

Now we resubstitute #u=sin(x)# to get the answer in terms of #x#:

#-1/u+C=-1/sin(x)+C=-csc(x)+C#