What is the arc length of #f(t)=(sqrt(t-1),2-8t) # over #t in [1,3]#?
1 Answer
Mar 12, 2018
Explanation:
#f(t)=(sqrt(t−1),2−8t)#
#f'(t)=(1/(2sqrt(t−1)),−8)#
Arc length is given by:
#L=int_1^3sqrt(1/(4(t−1))+64)dt#
Apply the substitution
#L=int_0^sqrt2sqrt(1/(4u^2)+64)(2udu)#
Simplify:
#L=int_0^sqrt2sqrt(1+256u^2)du#
Apply the substitution
#L=1/16intsec^3thetad theta#
This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:
#L=1/32[secthetatantheta+ln|sectheta+tantheta|]#
Reverse the last substitution:
#L=[1/2usqrt(1+256u^2)+1/32ln|16u+sqrt(1+256u^2)|]_0^sqrt2#
Insert the limits of integration:
#L=3/2sqrt114+1/32ln(16sqrt2+3sqrt57)#