How do you find the length of the curve x=t/(1+t), y=ln(1+t), where 0<=t<=2 ?

1 Answer
Mar 30, 2018

s(K)=int_a^b (dot x^2(t) + dot y^2(t))^(1/2)dt
where:
K - parameterized curve K(x(t),y(t))
t - parameter
s - lenght
[a,b] - interval of the parameter

Explanation:

a=0, b=2
dot x=((1+t)-t*1)/(1+t)^2=1/(1+t)^2
dot y=1/(1+t)
s(K)=int_0^2 (((1/(1+t)^2)^2+ (1/(1+t))^2)^(1/2)) dt=
=int_0^2 ((1/(1+t)^4+ 1/(1+t)^2)^(1/2)) dt=
=int_0^2 ((1+(1+t)^2)/(1+t)^4)^(1/2) dt=
=int_0^2 ((2+2t+t^2)/(1+t)^4)^(1/2) dt