How do you find the length of the curve x=t/(1+t), y=ln(1+t), where 0<=t<=2 ? Calculus Parametric Functions Determining the Length of a Parametric Curve (Parametric Form) 1 Answer AltairSafir Mar 30, 2018 s(K)=int_a^b (dot x^2(t) + dot y^2(t))^(1/2)dt where: K - parameterized curve K(x(t),y(t)) t - parameter s - lenght [a,b] - interval of the parameter Explanation: a=0, b=2 dot x=((1+t)-t*1)/(1+t)^2=1/(1+t)^2 dot y=1/(1+t) s(K)=int_0^2 (((1/(1+t)^2)^2+ (1/(1+t))^2)^(1/2)) dt= =int_0^2 ((1/(1+t)^4+ 1/(1+t)^2)^(1/2)) dt= =int_0^2 ((1+(1+t)^2)/(1+t)^4)^(1/2) dt= =int_0^2 ((2+2t+t^2)/(1+t)^4)^(1/2) dt Answer link Related questions How do you find the arc length of a parametric curve? How do you find the length of the curve x=1+3t^2, y=4+2t^3, where 0<=t<=1 ? How do you find the length of the curve x=e^t+e^-t, y=5-2t, where 0<=t<=3 ? How do you find the length of the curve x=3t-t^3, y=3t^2, where 0<=t<=sqrt(3) ? How do you determine the length of a parametric curve? How do you determine the length of x=3t^2, y=t^3+4t for t is between [0,2]? How do you determine the length of x=2t^2, y=t^3+3t for t is between [0,2]? What is the arc length of r(t)=(t,t,t) on tin [1,2]? What is the arc length of r(t)=(te^(t^2),t^2e^t,1/t) on tin [1,ln2]? What is the arc length of r(t)=(t^2,2t,4-t) on tin [0,5]? See all questions in Determining the Length of a Parametric Curve (Parametric Form) Impact of this question 8633 views around the world You can reuse this answer Creative Commons License