What is the arc length of r(t)=(t^2,2t,4-t) on tin [0,5]?
1 Answer
May 24, 2018
Explanation:
r(t)=(t^2,2t,4−t)
r'(t)=(2t,2,−1)
Arc length is given by:
L=int_0^5sqrt(4t^2+4+1)dt
Simplify:
L=int_0^5sqrt(4t^2+5)dt
Apply the substitution
L=5/2intsec^3thetad theta
This is a known integral:
L=5/2[secthetatantheta+ln|sectheta+tantheta|]
Reverse the substitution:
L=[tsqrt(4t^2+5)+5/2ln|2t+sqrt(4t^2+5)|]_0^5
Hence
L=5sqrt105+5/2ln(2sqrt5+sqrt21)