What is the arc length of r(t)=(t^2,2t,4-t) on tin [0,5]?

1 Answer
May 24, 2018

L=5sqrt105+5/2ln(2sqrt5+sqrt21)

Explanation:

r(t)=(t^2,2t,4−t)

r'(t)=(2t,2,−1)

Arc length is given by:

L=int_0^5sqrt(4t^2+4+1)dt

Simplify:

L=int_0^5sqrt(4t^2+5)dt

Apply the substitution 2t=sqrt5tantheta:

L=5/2intsec^3thetad theta

This is a known integral:

L=5/2[secthetatantheta+ln|sectheta+tantheta|]

Reverse the substitution:

L=[tsqrt(4t^2+5)+5/2ln|2t+sqrt(4t^2+5)|]_0^5

Hence

L=5sqrt105+5/2ln(2sqrt5+sqrt21)