How do you find the length of the curve x=e^t+e^-t, y=5-2t, where 0<=t<=3 ?

1 Answer
Aug 20, 2014

The answer is e^3-e^(-3).

Recall that the arclength for parametric curves is:

L=int_a^b sqrt(((dx)/(dt))^2+((dy)/(dt))^2)dt

So,

(dx)/(dt)=e^t-e^(-t)
(dy)/(dt)=-2

Now substituting:

L=int_0^3 sqrt((e^t-e^(-t))^2+(-2)^2)dt
=int_0^3 sqrt(e^(2t)-2+e^(-2t)+4)dt expand
=int_0^3 sqrt(e^(2t)+2+e^(-2t))dt simplify
=int_0^3 sqrt((e^t+e^(-t))^2)dt factor
=int_0^3 (e^t+e^(-t))dt simplify
=e^t-e^(-t)|_0^3 integrate
=e^3-e^(-3)-(e^0-e^0) evaluate
=e^3-e^(-3)

Note that there aren't many questions that can be solved algebraically. Please note the pattern of this problem because most algebraic solutions have this form.