What is the arc length of r(t)=(te^(t^2),t^2e^t,1/t) on tin [1,ln2]?
1 Answer
Arc Length
The arc length is negative due to the lower bound
Explanation:
We have a parametric vector function, given by:
bb ul r(t) = << te^(t^2), t^2e^t, 1/t >>
In order to calculate the arc-length we will require the vector derivative, which we can compute using the product rule:
bb ul r'(t) = << (t)(2te^(t^2)) + (1)(e^(t^2)) , (t^2)(e^t) + (2t)(e^t) , -1/t^2 >>
\ \ \ \ \ \ \ \ = << 2t^2e^(t^2) + e^(t^2) , t^2e^t + 2te^t , -1/t^2 >>
Then we compute the magnitude of the derivative vector:
| bb ul r'(t) | = sqrt( (2t^2e^(t^2) + e^(t^2))^2 + (t^2e^t + 2te^t)^2 + (-1/t^2)^2) )
" " = sqrt( e^(2 t) t^4 + 1/t^4 + 4 e^(2 t) t^3 + 4 e^(2 t) t^2 + 4 e^(2 t^2) t^2 + e^(2 t^2) + 4 e^(2 t^2) t^4 )
Then we can compute the arc-length using:
L = int_(1)^(ln2) \ | bb ul r'(t) | \ dt
\ \ = int_(1)^(ln2) \ sqrt( e^(2 t) t^4 + 1/t^4 + 4 e^(2 t) t^3 + 4 e^(2 t) t^2 + 4 e^(2 t^2) t^2 + e^(2 t^2) + 4 e^(2 t^2) t^4 ) \ dt
It is unlikely we can compute this integral using analytical technique, so instead using Numerical Methods we obtain an approximation:
L ~~ −2.42533 \ \ (5dp)
The arc length is negative due to the lower bound