What is the arclength of #(tant-sect*csct)# on #t in [pi/8,pi/3]#?
1 Answer
Explanation:
#f(t)=tant-sect*csct=-cott#
#f'(t)=csc^2t#
Arclength is given by:
#L=int_(pi/8)^(pi/3)sqrt(1+csc^4t)dt#
Rearrange:
#L=int_(pi/8)^(pi/3)csc^2tsqrt(1+sin^4t)dt#
Since
#L=int_(pi/8)^(pi/3)csc^2t{sum_(n=0)^oo((1/2),(n))sin^(4n)t}dt#
Isolate the
#L=int_(pi/8)^(pi/3)csc^2tdt+sum_(n=1)^oo((1/2),(n))int_(pi/8)^(pi/3)sin^(4n-2)tdt#
Apply the trigonometric power-reduction formula:
#L=[-cott]_ (pi/8)^(pi/3)+sum_(n=1)^oo((1/2),(n))int_(pi/8)^(pi/3){1/2^(4n-2)((4n-2),(2n-1))+2/2^(4n-2)sum_(k=0)^(2n-2)((4n-2),(k))(-1)^(2n-1-k)cos((4n-2-2k)t)}dt#
Simplify:
#L=cot(pi/8)-cot(pi/3)+4sum_(n=1)^oo((1/2),(n))1/16^nint_(pi/8)^(pi/3){((4n-2),(2n-1))+2sum_(k=0)^(2n-2)((4n-2),(k))(-1)^(2n-1-k)cos((4n-2-2k)t)}dt#
Integrate directly:
#L=cot(pi/8)-cot(pi/3)+4sum_(n=1)^oo((1/2),(n))1/16^n[((4n-2),(2n-1))t+sum_(k=0)^(2n-2)((4n-2),(k))(-1)^(2n-1-k)/(2n-1-k)sin((4n-2-2k)t)]_(pi/8)^(pi/3)#
Simplify:
#L=cot(pi/8)-cot(pi/3)+4sum_(n=1)^oo((1/2),(n))1/16^n{((4n-2),(2n-1))(5pi)/24+sum_(k=0)^(2n-2)((4n-2),(k))(-1)^(2n-1-k)/(2n-1-k)(sin((4n-2-2k)pi/3)-sin((4n-2-2k)pi/3))}#