We have:
inttsin(mt)dt∫tsin(mt)dt, where mm is presumably real, and does not equal zero. We say that m!=0m≠0 and m inRR.
According to integration by parts, intf(x)g(x)dx=f(x)intg(x)dx-intf'(x)(intg(x)dx)dx
Here, f(t)=t and g(t)=sin(mt). We have:
tintsin(mt)dt-int(intsin(mt)dt)dt
We need to compute intsin(mt)dt. Using integration by substitution,
intf(g(x))g'(x)dx=intf(u)du, where u=g(x). Here, u=mt, and u'=m, so we can say:
1/m intsin(mt)mdt
1/m intsin(u)du
1/m*-cos(u)
-cos(mt)/m. Inputting:
-(tcos(mt))/m-int-cos(mt)/mdt
-(tcos(mt))/m+1/m intcos(mt)dt
Using integration by substitution, where u=mt again, we have:
-(tcos(mt))/m+1/m(1/m intcos(mt)mdt)
-(tcos(mt))/m+1/m(1/m intcos(u)du)
-(tcos(mt))/m+1/m(1/m sin(mt))
sin(mt)/m^2-(tcos(mt))/m
(sin(mt)-mtcos(mt))/m^2+C