How do you integrate int t sin(mt)dttsin(mt)dt where m does not equal 0?

1 Answer
Mar 19, 2018

(sin(mt)-mtcos(mt))/m^2+Csin(mt)mtcos(mt)m2+C

Explanation:

We have:

inttsin(mt)dttsin(mt)dt, where mm is presumably real, and does not equal zero. We say that m!=0m0 and m inRR.

According to integration by parts, intf(x)g(x)dx=f(x)intg(x)dx-intf'(x)(intg(x)dx)dx

Here, f(t)=t and g(t)=sin(mt). We have:

tintsin(mt)dt-int(intsin(mt)dt)dt

We need to compute intsin(mt)dt. Using integration by substitution,

intf(g(x))g'(x)dx=intf(u)du, where u=g(x). Here, u=mt, and u'=m, so we can say:

1/m intsin(mt)mdt

1/m intsin(u)du

1/m*-cos(u)

-cos(mt)/m. Inputting:

-(tcos(mt))/m-int-cos(mt)/mdt

-(tcos(mt))/m+1/m intcos(mt)dt

Using integration by substitution, where u=mt again, we have:

-(tcos(mt))/m+1/m(1/m intcos(mt)mdt)

-(tcos(mt))/m+1/m(1/m intcos(u)du)

-(tcos(mt))/m+1/m(1/m sin(mt))

sin(mt)/m^2-(tcos(mt))/m

(sin(mt)-mtcos(mt))/m^2+C