What is the arclength of #(t^2-lnt,lnt)# on #t in [1,2]#?

1 Answer
Mar 19, 2018

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2ln2# units.

Explanation:

#f(t)=(t^2-lnt,lnt)#

#f'(t)=(2t-1/t, 1/t)#

Arclength is given by:

#L=int_1^2sqrt((2t-1/t)^2+1/t^2)dt#

Simplify:

#L=int_1^2sqrt((2t^2-1)^2+1)/tdt#

Apply the substitution #2t^2-1=u#:

#L=1/2int_1^7sqrt(u^2+1)/(u+1)du#

Rearrange:

#L=1/2int_1^7(u^2+1)/(sqrt(u^2+1)(u+1))du#

#color(white)(L)=1/2int_1^7(u^2-1+2)/(sqrt(u^2+1)(u+1))du#

Factorize:

#L=1/2int_1^7((u-1)(u+1)+2)/(sqrt(u^2+1)(u+1))du#

Integration is distributive:

#L=1/2int_1^7(u-1)/sqrt(u^2+1)du+int_1^7 1/(sqrt(u^2+1)(u+1))du#

#color(white)(L)=1/2int_1^7(u/sqrt(u^2+1)-1/sqrt(u^2+1))du+int_1^7 1/(sqrt(u^2+1)(u+1))du#

Apply the substitution #u=tan2theta#:

#L=1/2[sqrt(u^2+1)-sinh^(-1)u]_1^7+2int(sec2theta)/(tan2theta+1)d theta#

Apply the double-angle Trigonometric identities:

#L=1/2(sqrt50-sqrt2-sinh^(-1)7+sinh^(-1)1)+2intsec^2theta/(2tantheta+1-tan^2theta)d theta#

Apply the substitution #tantheta=v#:

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+2int_(sqrt2-1)^((5sqrt2-1)/7)1/(2v+1-v^2)dv#

Factorize the denominator:

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+2int_(sqrt2-1)^((5sqrt2-1)/7)1/((sqrt2-1+v)(sqrt2+1-v))dv#

Apply partial fraction decomposition:

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2int_(sqrt2-1)^((5sqrt2-1)/7)(1/(sqrt2-1+v)+1/(sqrt2+1-v))dv#

Integrate directly:

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2[ln|sqrt2-1+v|-ln|sqrt2+1-v|]_(sqrt2-1)^((5sqrt2-1)/7)#

Simplify:

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2[ln|(sqrt2-1+v)/(sqrt2+1-v)|]_(sqrt2-1)^((5sqrt2-1)/7)#

Insert the limits of integration:

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2ln|(12sqrt2-8)/(2sqrt2+8)*2/(2sqrt2-2)|#

Simplify:

#L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2ln2#