What is the arclength of (t^2-lnt,lnt)(t2lnt,lnt) on t in [1,2]t[1,2]?

1 Answer
Mar 19, 2018

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2ln2L=22+12(sinh11sinh17)+12ln2 units.

Explanation:

f(t)=(t^2-lnt,lnt)f(t)=(t2lnt,lnt)

f'(t)=(2t-1/t, 1/t)

Arclength is given by:

L=int_1^2sqrt((2t-1/t)^2+1/t^2)dt

Simplify:

L=int_1^2sqrt((2t^2-1)^2+1)/tdt

Apply the substitution 2t^2-1=u:

L=1/2int_1^7sqrt(u^2+1)/(u+1)du

Rearrange:

L=1/2int_1^7(u^2+1)/(sqrt(u^2+1)(u+1))du

color(white)(L)=1/2int_1^7(u^2-1+2)/(sqrt(u^2+1)(u+1))du

Factorize:

L=1/2int_1^7((u-1)(u+1)+2)/(sqrt(u^2+1)(u+1))du

Integration is distributive:

L=1/2int_1^7(u-1)/sqrt(u^2+1)du+int_1^7 1/(sqrt(u^2+1)(u+1))du

color(white)(L)=1/2int_1^7(u/sqrt(u^2+1)-1/sqrt(u^2+1))du+int_1^7 1/(sqrt(u^2+1)(u+1))du

Apply the substitution u=tan2theta:

L=1/2[sqrt(u^2+1)-sinh^(-1)u]_1^7+2int(sec2theta)/(tan2theta+1)d theta

Apply the double-angle Trigonometric identities:

L=1/2(sqrt50-sqrt2-sinh^(-1)7+sinh^(-1)1)+2intsec^2theta/(2tantheta+1-tan^2theta)d theta

Apply the substitution tantheta=v:

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+2int_(sqrt2-1)^((5sqrt2-1)/7)1/(2v+1-v^2)dv

Factorize the denominator:

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+2int_(sqrt2-1)^((5sqrt2-1)/7)1/((sqrt2-1+v)(sqrt2+1-v))dv

Apply partial fraction decomposition:

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2int_(sqrt2-1)^((5sqrt2-1)/7)(1/(sqrt2-1+v)+1/(sqrt2+1-v))dv

Integrate directly:

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2[ln|sqrt2-1+v|-ln|sqrt2+1-v|]_(sqrt2-1)^((5sqrt2-1)/7)

Simplify:

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2[ln|(sqrt2-1+v)/(sqrt2+1-v)|]_(sqrt2-1)^((5sqrt2-1)/7)

Insert the limits of integration:

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2ln|(12sqrt2-8)/(2sqrt2+8)*2/(2sqrt2-2)|

Simplify:

L=2sqrt2+1/2(sinh^(-1)1-sinh^(-1)7)+1/sqrt2ln2