How do you find the integral of #tan^3(2x) sec^100(2x) dx#?

1 Answer
Mar 23, 2018

#I=1/204sec^102(2x)-1/200sec^100(2x)+C#

Explanation:

We want to solve

#I=inttan^3(2x)sec^100(2x)dx#

Make a substitution #u=2x=>(du)/dx=2#

#I=1/2inttan^3(u)sec^100(u)du#

Use the identity #color(green)(tan^2(x)=sec^2(x)-1#

#I=1/2inttan(u)(sec^2(u)-1)sec^100(u)du#

Make a substitution #s=sec(u)=>(ds)/(du)=sec(u)tan(u)#

#I=1/2int(s^2-1)s^99du#

#color(white)(I)=1/2ints^101-s^99du#

#color(white)(I)=1/204s^102-1/200s^100#

Substitute back #s=sec(u)# and #u=2x#

#I=1/204sec^102(2x)-1/200sec^100(2x)+C#