What is #int tan^2(2x) sec^4(2x) dx#?
2 Answers
Explanation:
We want to solve
#I=inttan^2(2x)sec^4(2x)dx#
Rewrite the integrand using the trig identity
#color(blue)(sec^2(a)=1+tan^2(a)#
Thus
#I=inttan^2(2x)(1+tan^2(2x))sec^2(2x)dx#
Make a substitution
#I=1/2intu^2(1+u^2)du#
#color(white)(I)=1/2intu^4+u^2du#
#color(white)(I)=1/2(1/5u^5+1/3u^3)+C#
#color(white)(I)=1/30(3u^5+5u^3)+C#
Substitute back
#I=1/30(3tan^5(2x)+5tan^3(2x))+C#
Explanation:
=
if
or
and
=
=
=
=
=