What is the derivative of 1/sqrt(1 - x^2)11x2?

2 Answers
Apr 12, 2018

=(x)(1-x^2)^(-3/2)=(x)(1x2)32

Explanation:

f(x)=1/sqrt(1-x^2)=(sqrt(1-x^2))^-1=(1-x^2)^(-1/2)f(x)=11x2=(1x2)1=(1x2)12
d/dx f(x)=-1/2(1-x^2)^(-1/2-1)(0-2x)ddxf(x)=12(1x2)121(02x)
=(2x)/2(1-x^2)^(-3/2)=2x2(1x2)32
=(x)(1-x^2)^(-3/2)=(x)(1x2)32

Apr 12, 2018

The derivative is (xsqrt(1-x^2))/(1-x^2)^2x1x2(1x2)2.

Explanation:

Using the quotient rule:

color(white)=d/dx[1/sqrt(1-x^2)]=ddx[11x2]

=(d/dx[1]*sqrt(1-x^2)-1*d/dx[sqrt(1-x^2)])/(sqrt(1-x^2))^2=ddx[1]1x21ddx[1x2](1x2)2

=(0*sqrt(1-x^2)-1*d/dx[sqrt(1-x^2)])/(1-x^2)=01x21ddx[1x2]1x2

=(-d/dx[sqrt(1-x^2)])/(1-x^2)=ddx[1x2]1x2

Chain rule:

=(-1/(2sqrt(1-x^2))*d/dx[1-x^2])/(1-x^2)=121x2ddx[1x2]1x2

=(-1/(2sqrt(1-x^2))*-2x)/(1-x^2)=121x22x1x2

=(x/sqrt(1-x^2))/(1-x^2)=x1x21x2

=((xsqrt(1-x^2))/(1-x^2))/(1-x^2)=x1x21x21x2

=(xsqrt(1-x^2))/(1-x^2)^2=x1x2(1x2)2

That's the derivative. Hope this helped!