Using the quotient rule:
color(white)=d/dx[1/sqrt(1-x^2)]=ddx[1√1−x2]
=(d/dx[1]*sqrt(1-x^2)-1*d/dx[sqrt(1-x^2)])/(sqrt(1-x^2))^2=ddx[1]⋅√1−x2−1⋅ddx[√1−x2](√1−x2)2
=(0*sqrt(1-x^2)-1*d/dx[sqrt(1-x^2)])/(1-x^2)=0⋅√1−x2−1⋅ddx[√1−x2]1−x2
=(-d/dx[sqrt(1-x^2)])/(1-x^2)=−ddx[√1−x2]1−x2
Chain rule:
=(-1/(2sqrt(1-x^2))*d/dx[1-x^2])/(1-x^2)=−12√1−x2⋅ddx[1−x2]1−x2
=(-1/(2sqrt(1-x^2))*-2x)/(1-x^2)=−12√1−x2⋅−2x1−x2
=(x/sqrt(1-x^2))/(1-x^2)=x√1−x21−x2
=((xsqrt(1-x^2))/(1-x^2))/(1-x^2)=x√1−x21−x21−x2
=(xsqrt(1-x^2))/(1-x^2)^2=x√1−x2(1−x2)2
That's the derivative. Hope this helped!