How do you find the limit (4x)/(sqrt(2x^2+1)) as x->oo?

1 Answer

We have that

(4x)/(sqrt(2x^2+1))=(4x)/(sqrt(x^2(2+1/x^2)))=(4x)/(absx*(sqrt(2+1/x^2)))

If x goes to +oo the absolute value becomes positive hence absx=x
hence

lim_(x->+oo) (4x)/(absx*(sqrt(2+1/x^2)))= lim_(x->+oo) (4x)/(x*(sqrt(2+1/x^2)))=4/sqrt2=2*sqrt2

If x goes to -oo the absolute value becomes negative hence absx=-x
hence

lim_(x->+oo) (4x)/(absx*(sqrt(2+1/x^2)))= lim_(x->+oo) (4x)/(-x*(sqrt(2+1/x^2)))=-4/sqrt2=-2*sqrt2