How do you find the derivative of sinx/(1+cosx)?

2 Answers
May 3, 2018

1/(cosx+1)

Explanation:

f(x)=sinx/(cosx+1)

f'(x)=(sinx/(cosx+1))'

The derivative of f(x)/g(x) using Quotient Rule is
(f'(x)g(x)-f(x)g'(x))/g^2(x)
so in our case it is

f'(x)=((sinx)'(cosx+1)-sinx(cosx+1)')/(cosx+1)^2 =

(cosx(cosx+1)+sin^2x)/(cosx+1)^2 =

(color(blue)(cos^2x)+cosx+color(blue)(sin^2x))/(cosx+1)^2 =

cancel((cosx+color(blue)(1)))/(cosx+1)^cancel(2) =

1/(cosx+1)

May 3, 2018

1/2sec^2(x/2) or 1/(1+cosx).

Explanation:

We have, sinx/(1+cosx),

={2sin(x/2)cos(x/2)}/{2cos^2(x/2)},

=tan(x/2).

"Therefore, "d/dx{sinx/(1+cosx)},

=d/dx{tan(x/2)},

=sec^2(x/2)*d/dx{x/2}......"[The Chain Rule]",

=sec^2(x/2)*1/2,

=1/2sec^2(x/2), or,

=1/(2cos^2(x/2)),

=1/(1+cosx).