What is the arclength of (t-3t^2,t^2-t) on t in [1,2]?

1 Answer
May 19, 2018

L=1/10(9sqrt130-4sqrt26)+1/(10sqrt10)ln((18+5sqrt13)/(8+sqrt65)) units.

Explanation:

f(t)=(t-3t^2,t^2-t)

f'(t)=(1-6t,2t-1)

Arclength is given by:

L=int_1^2sqrt((1-6t)^2+(2t-1)^2)dt

Expand the squares and combine terms:

L=int_1^2sqrt(40t^2-16t+2)dt

Complete the square in the square root:

L=sqrt(2/5)int_1^2sqrt((10t-2)^2+1)dt

Apply the substitution 10t-2=tantheta:

L=1/(5sqrt10)intsec^3thetad theta

This is a known integral:

L=1/(10sqrt10)[secthetatantheta+ln|sectheta+tantheta|]

Reverse the substitution:

L=1/(10sqrt10)[(10t-2)sqrt((10t-2)^2+1)+ln|(10t-2)+sqrt((10t-2)^2+1)|]_1^2

Hence

L=1/(10sqrt10){90sqrt13-8sqrt65+ln((18+5sqrt13)/(8+sqrt65))}

Simplify:

L=1/10(9sqrt130-4sqrt26)+1/(10sqrt10)ln((18+5sqrt13)/(8+sqrt65))