What is the arclength of #(t/(t+5),t)# on #t in [-1,1]#?
1 Answer
May 25, 2018
Explanation:
#f(t)=(t/(t+5),t)=(1-5/(t+5),t)#
#f'(t)=(5/(t+5)^2,1)#
Arclength is given by:
#L=int_-1^1sqrt(25/(t+5)^4+1)dt#
Apply the substitution
#L=int_4^6sqrt(1+25/u^4)du#
For
#L=int_4^6sum_(n=0)^oo((1/2),(n))(25/u^4)^ndu#
Isolate the
#L=int_4^6du+sum_(n=1)^oo((1/2),(n))25^nint_4^6u^(-4n)du#
Integrate directly:
#L=2+sum_(n=1)^oo((1/2),(n))25^n/(1-4n)[u^(1-4n)]_4^6#
Hence
#L=2+4sum_(n=1)^oo((1/2),(n))1/(4n-1)(5/16)^(2n)(1-(2/3)^(4n-1))#