How do you differentiate f(x)= (x^2-x+2)/ (x- 1 ) using the quotient rule?

1 Answer
May 30, 2018

f'(x)=1-2/((x-1)²)

Explanation:

f(x)=(x²-x+2)/(x-1)

=((x-1)²+x+1)/(x-1)

=(x-1)^(cancel(2)^(color(red)(=1)))/cancel((x-1))+(x+1)/(x-1)

f(x)=x-1+(x+1)/(x-1)

Also, using quotient rule : d/dx (u(x))/(v(x))=(u'v-uv')/(v²), there :
u=x+1

v=x-1

u'=1

v'=1

So:
f'(x)=1+(cancel(x)-1-(cancel(x)+1))/((x-1)²)

f'(x)=1-2/((x-1)²)

\0/ here's our answer!