What is the arclength of #f(t) = (t^3-t+55,t^2-1)# on #t in [2,3]#?

1 Answer
Jun 20, 2018

#L=56/3+2/9sum_(n=1)^oo((1/2),(n))2^nint_6^9(1/(u-1)-1/(u+1))^(2n-1)du# units.

Explanation:

#f(t)=(t^3-t+55,t^2-1)#

#f'(t)=(3t^2-1,2t)#

Arclength is given by:

#L=int_2^3sqrt((3t^2-1)^2+(2t)^2)dt#

Expand the squares:

#L=int_2^3sqrt(9t^4-2t^2+1)dt#

Complete the square in the square root:

#L=1/3int_2^3sqrt((9t^2-1)^2+8)dt#

Rearrange:

#L=1/3int_2^3(9t^2-1)sqrt(1+8/(9t^2-1)^2)dt#

For #t in [2,3]#, #8/(9t^2-1)^2<1#. Take the series expansion of the square root:

#L=1/3int_2^3(9t^2-1){sum_(n=0)^oo((1/2),(n))(8/(9t^2-1)^2)^n}dt#

Isolate the #n=0# term and simplify:

#L=1/3int_2^3(9t^2-1)dt+1/3sum_(n=1)^oo((1/2),(n))8^nint_2^3 1/(9t^2-1)^(2n-1)dt#

Apply partial fraction decomposition:

#L=1/3[3t^3-t]_ 2^3+2/3sum_(n=1)^oo((1/2),(n))2^nint_2^3(1/(3t-1)-1/(3t+1))^(2n-1)dt#

For ease of reading, apply the substitution #3t=u#:

#L=56/3+2/9sum_(n=1)^oo((1/2),(n))2^nint_6^9(1/(u-1)-1/(u+1))^(2n-1)du#

The #n=1# case is trivial.