Question #bb7dc

2 Answers
Apr 29, 2016

Assuming that lim_(xrarroo)f(x) = 0, use the fact that lim_(urarroo)(1+1/u)^u = e and the fact that the exponential function is continuous.

Explanation:

Note that lim_(urarroo)(1+1/u)^u = e.

If lim_(xrarroo)f(x) = 0, then

lim_(xrarroo)(1+f(x)) = lim_(xrarroo)[(1+1/(1/f(x)))^(1/f(x))]^f(x)

By the limit stated above, with u = 1/f(x), we have

lim_(xrarroo)u = oo, and so,

lim_(xrarroo)[(1+1/(1/f(x)))^(1/f(x))] = lim_(urarroo)(1+1/u)^u = e

So

lim_(xrarroo)(1+f(x))^g(x) = lim_(xrarroo)([(1+1/(1/f(x)))^(1/f(x))]^f(x))^g(x)

= lim_(xrarroo) ([e]^f(x))^g(x)

= lim_(xrarroo) e^(f(x)g(x))

= e^(lim_(xrarroo)f(x)g(x))

Notes

lim_(urarroo)(1+1/u)^u = e is sometimes taken as the definition of e.

It can be verified using l'Hospital's Rule

ln((1+1/u)^u) = u ln(1+1/u) = ln(1+1/u)/(1/u) which takes indeterminate form (-oo)/oo as xrarroo

L'Hospitals's rule asks us to eveluate

lim_(urarroo)(1/(1+1/u)(-1/u^2))/(-1/u^2) which evaluates to 1.

Since the limit of the ln is 1, the limit of the expression is e.

Another Limit Result

If lim_(xrarra)f(x)=1 and lim_(xrarra)g(x) = oo,

then we can evaluate lim_(xrarra)(f(x))^(g(x)) using lim_(urarroo)(1+1/u)^u = e to get

lim_(xrarra)(f(x))^(g(x)) = e^(lim_(xrarra)(f(x)-1)g(x)).

Outline of proof:

As xrarra,

we have f(x) rarr 1, so

(f(x)-1)rarr0^+, and

1/(f(x)-1) rarroo

Therefore, as xrarra, (with u = 1/(f(x)-1)) we have

(1+1/(1/(f(x)-1)))^(1/(f(x)-1)) rarr e

We can conclude that

lim_(xrarra)(f(x))^(g(x)) = lim_(xrarra)e^((f(x)-1)g(x))

= e^(lim_(xrarra)(f(x)-1)g(x))

Although this equality holds for any g(x), it is only interesting if lim_(xrarr)g(x) = oo " or " -oo. Otherwise we get a triviality 1^g(x) = e^0

Apr 30, 2016

Assume that as xtooo, both f(x) and g(x)to0 and we are concerned about the limit of the ratio.. See explanation for proof/derivation, under this assumption

Explanation:

( 1 + f(x) )^(1/g(x))=e^(1/g(x))ln (1+f(x))=e^(1/g(x))(f(x)+O((f(x))^2)).

=e^(f(x)/g(x)(1+O(f(x))

Now, take the limit as xtooo..