Question #6dd46
2 Answers
Aug 31, 2016
Explanation:
We will make use of some algebra,the well known limit
and the following:
- if
f(x) is continuous, thenlim_(x->a)f(x) = f(lim_(x->a)x) - if
f(x) andg(x) have finite limits ata , thenlim_(x->a)f(x)g(x) = lim_(x->a)f(x)*lim_(x->a)g(x)
=lim_(x->0)(x^2(1+cos(x)))/((1-cos(x))(1+cos(x)))
=lim_(x->0)x^2/(1-cos^2(x))(1+cos(x))
=lim_(x->0)x^2/sin^2(x)(1+cos(x))
=lim_(x->0)(x/sin(x))^2(1+cos(x))
=lim_(x->0)(sin(x)/x)^(-2)(1+cos(x))
=lim_(x->0)(sin(x)/x)^(-2) * lim_(x->0)(1+cos(x))
=(lim_(x->0)sin(x)/x)^(-2) * lim_(x->0)(1+cos(x))
=1^(-2)(1+cos(0))
=2
Sep 22, 2016
Explanation:
We use the Trigo. Identity
Reqd. Lim.