Question #6dd46

2 Answers
Aug 31, 2016

lim_(x->0)x^2/(1-cos(x)) = 2

Explanation:

We will make use of some algebra,the well known limit lim_(x->0)sin(x)/x = 1

and the following:

  • iff(x) is continuous, then lim_(x->a)f(x) = f(lim_(x->a)x)
  • if f(x) and g(x) have finite limits at a, then lim_(x->a)f(x)g(x) = lim_(x->a)f(x)*lim_(x->a)g(x)

lim_(x->0)x^2/(1-cos(x))

=lim_(x->0)(x^2(1+cos(x)))/((1-cos(x))(1+cos(x)))

=lim_(x->0)x^2/(1-cos^2(x))(1+cos(x))

=lim_(x->0)x^2/sin^2(x)(1+cos(x))

=lim_(x->0)(x/sin(x))^2(1+cos(x))

=lim_(x->0)(sin(x)/x)^(-2)(1+cos(x))

=lim_(x->0)(sin(x)/x)^(-2) * lim_(x->0)(1+cos(x))

=(lim_(x->0)sin(x)/x)^(-2) * lim_(x->0)(1+cos(x))

=1^(-2)(1+cos(0))

=2

Sep 22, 2016

2.

Explanation:

We use the Trigo. Identity : 1-cos2theta=2sin^2theta.

Reqd. Lim. =lim_(xrarr0) x^2/(1-cosx)

=lim_(xrarr0)x^2/(2sin^2(x/2)

=lim_(xrarr0) (2(x^2/4))/(sin^2(x/2)

=2[lim_(xrarr0){(x/2)/(sin(x/2))}^2]

=2[lim_(xrarr0)(x/2)/(sin(x/2))]^2

=2*(1)^2

=2, as respected sente has derived!.