A= lim_"x->oo" sqrt((x^2+4)/(x+4)) B=lim_"x->oo" sqrt((x^2+5)/x^3) Find A and B ?

3 Answers
Sep 28, 2016

See below

Explanation:

lim_ (x -> oo) sqrt((x^2+4)/(x+4)

= lim_ (x -> oo) sqrt((1+4/x^2)/(1/x+4/x^2)

= sqrt((1+lim_ (x -> oo)4/x^2)/(lim_ (x -> oo)1/x+ lim_ (x -> oo)4/x^2)

=sqrt((1+ 0)/( 0+ 0))

= oo

lim_ (x-> oo) sqrt((x^2+5)/x^3)

= lim_ (x-> oo) sqrt(1/x + 5/x^3)

= sqrt(lim_ (x-> oo) 1/x + lim_ (x-> oo) 5/x^3)

= sqrt 0

= 0

Sep 28, 2016

oo and 0

Explanation:

lim_ (x -> oo) sqrt((x^2+4)/(x+4)) = sqrt(lim_ (x -> oo)(x^2/x)(1+4/x^2)/(1+4/x)) = oo

lim_ (x-> oo) sqrt((x^2+5)/x^3) = sqrt(lim_ (x-> oo)(x^2)/(x^3)(1+5/x^2)) = 0

Sep 28, 2016

oo, 0

Explanation:

A= lim_"x->oo" sqrt((x^2+4)/(x+4))

= lim_"x->oo" sqrt((x+4/x)/(1+4/x))

=lim_"x->oo" sqrt(x/1) = oo

B=lim_"x->oo" sqrt((x^2+5)/x^3)

= lim_"x->oo" sqrt((1+5/x^2)/x)

=lim_"x->oo" sqrt(1/x) = 0