Question #b852b

1 Answer
Nov 4, 2016

lim_(x->0) (sinx - tanx)/(sinx + tanx) = 0

Explanation:

Let's see what we can do with identities to simplify the function before evaluating.

=lim_(x->0) (sinx - sinx/cosx)/(sinx + sinx/cosx)

=lim_(x->0) ((sinxcosx - sinx)/cosx)/((sinxcosx + sinx)/cosx)

=lim_(x->0) (sinxcosx- sinx)/cosx xx cosx/(sinxcosx + sinx)

=lim_(x->0) (sinx(cosx - 1))/cosx xx cosx/(sinx(cosx + 1))

=lim_(x->0)(cosx - 1)/(cosx +1)

We can now substitute:

= (cos(0) - 1)/(cos(0) + 1)

=0/2

=0

Hopefully this helps!