Question #1f024

2 Answers
Oct 5, 2016

00

Explanation:

(sin(x) - tan(x))/(sin(x)+tan(x))=sin(x)/(sin(x))(1-1/cos(x))/(1+1/cos(x))=sin(x)tan(x)sin(x)+tan(x)=sin(x)sin(x)11cos(x)1+1cos(x)=
(1-1/cos(x))/(1+1/cos(x))=cos(x)/cos(x)(cos(x)-1)/(cos(x)+1)=(cos(x)-1)/(cos(x)+1)11cos(x)1+1cos(x)=cos(x)cos(x)cos(x)1cos(x)+1=cos(x)1cos(x)+1

so

lim_(x->0)(sin(x) - tan(x))/(sin(x)+tan(x))=lim_(x->0)(cos(x)-1)/(cos(x)+1)=0/2=0

Oct 5, 2016

0.

Explanation:

We use the following Standard Limits :

lim_(xrarr0)sinx/x=1, and, lim_(xrarr0)tanx/x=1.

Now, get the Reqd. Limit, we divide by x, in "Nr. and "Dr. of the

given fun. Thus, we have,

The reqd. Lim. =lim_(xrarr0) (sinx/x-tanx/x)/(sinx/x+tanx/x)=(1-1)/(1+1)

:." The Reqd. Lim."=0