Question #ff93d
2 Answers
Explanation:
Multiply the numerator and denominator by the conjugate of the denominator:
=lim_(xrarr2)((x-sqrt(8-x^2))(sqrt(x^2+12)+4))/((sqrt(x^2+12)-4)(sqrt(x^2+12)+4))
=lim_(xrarr2)((x-sqrt(8-x^2))(sqrt(x^2+12)+4))/((x^2+12)-16)
=lim_(xrarr2)((x-sqrt(8-x^2))(sqrt(x^2+12)+4))/(x^2-4)
The denominator is still
=lim_(xrarr2)((x-sqrt(8-x^2))(x+sqrt(8-x^2))(sqrt(x^2+12)+4))/((x^2-4)(x+sqrt(8-x^2))
=lim_(xrarr2)((x^2-(8-x^2))(sqrt(x^2+12)+4))/((x^2-4)(x+sqrt(8-x^2))
=lim_(xrarr2)((2x^2-8)(sqrt(x^2+12)+4))/((x^2-4)(x+sqrt(8-x^2))
=lim_(xrarr2)(2(x^2-4)(sqrt(x^2+12)+4))/((x^2-4)(x+sqrt(8-x^2))
=lim_(xrarr2)(2(sqrt(x^2+12)+4))/(x+sqrt(8-x^2)
Now we can evaluate the limit:
=(2(sqrt(4+12)+4))/(2+sqrt(8-4))
=(2(4+4))/(2+2)
=4
[
" "as" " xto2=>x!=2=>x^2-4!=0 ]
so the limit becomes