Question #261f3

1 Answer
Nov 28, 2016

lim_(x->oo)((x+1)/(x+3))^x=e^-2

Explanation:

lim_(x->oo)((x+1)/(x+3))^x = lim_(x->oo)e^ln(((x+1)/(x+3))^x)

=lim_(x->oo)e^(xln((x+1)/(x+3)))

=e^(lim_(x->oo)xln((x+1)/(x+3))

The above step is valid due to the continuity of f(x)=e^x.

Solving the limit in the exponent, we have

lim_(x->oo)xln((x+1)/(x+3)) = lim_(x->oo)ln((x+1)/(x+3))/(1/x)

=lim_(x->oo)(d/dxln((x+1)/(x+3)))/(d/dx1/x)

The above step applies L'Hopital's rule to a 0/0 indeterminate form.

=lim_(x->oo)(d/dx(ln(x+1)-ln(x+3)))/(-1/x^2)

=lim_(x->oo)(1/(x+1)-1/(x+3))/(-1/x^2)

=lim_(x->oo)(2/(x^2+4x+3))/(-1/x^2)

=lim_(x->oo)-(2x^2)/(x^2+4x+3)

=lim_(x->oo)-2/(1+4/x+3/x^2)

=-2/(1+0+0)

=-2

Substituting this into our original work, we get the final result:

lim_(x->oo)((x+1)/(x+3))^x = e^(lim_(x->oo)xln((x+1)/(x+3)))=e^-2