Question #261f3
1 Answer
Nov 28, 2016
Explanation:
=lim_(x->oo)e^(xln((x+1)/(x+3)))
=e^(lim_(x->oo)xln((x+1)/(x+3))
The above step is valid due to the continuity of
Solving the limit in the exponent, we have
=lim_(x->oo)(d/dxln((x+1)/(x+3)))/(d/dx1/x)
The above step applies L'Hopital's rule to a
=lim_(x->oo)(d/dx(ln(x+1)-ln(x+3)))/(-1/x^2)
=lim_(x->oo)(1/(x+1)-1/(x+3))/(-1/x^2)
=lim_(x->oo)(2/(x^2+4x+3))/(-1/x^2)
=lim_(x->oo)-(2x^2)/(x^2+4x+3)
=lim_(x->oo)-2/(1+4/x+3/x^2)
=-2/(1+0+0)
=-2
Substituting this into our original work, we get the final result: