Question #a303d

1 Answer
Jan 13, 2017

lim_(x->oo) (1+3^x)/(1-3^x) = -1

Explanation:

You can write the function as:

(1+3^x)/(1-3^x) = (3^x(3^(-x) + 1))/(3^x(3^(-x) - 1)) = (3^(-x) + 1)/(3^(-x) - 1)

As:

lim_(x->oo) 3^(-x) = 0

We have:

lim_(x->oo) (1+3^x)/(1-3^x) = lim_(x->oo) (3^(-x) + 1)/(3^(-x) - 1) = -1