Question #a303d Calculus Limits Determining Limits Algebraically 1 Answer Andrea S. Jan 13, 2017 lim_(x->oo) (1+3^x)/(1-3^x) = -1 Explanation: You can write the function as: (1+3^x)/(1-3^x) = (3^x(3^(-x) + 1))/(3^x(3^(-x) - 1)) = (3^(-x) + 1)/(3^(-x) - 1) As: lim_(x->oo) 3^(-x) = 0 We have: lim_(x->oo) (1+3^x)/(1-3^x) = lim_(x->oo) (3^(-x) + 1)/(3^(-x) - 1) = -1 Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 1100 views around the world You can reuse this answer Creative Commons License