Question #7c813
2 Answers
Explanation:
L=lim_(xrarroo)((2x+3)/(2x+1))^(x+1)
When we have a function with an exponent that's another function, it's best to take the natural logarithm of both sides:
ln(L)=ln(lim_(xrarroo)((2x+3)/(2x+1))^(x+1))
The natural logarithm can be moved inside the limit:
ln(L)=lim_(xrarroo)ln(((2x+3)/(2x+1))^(x+1))
Rewrite the function using
ln(L)=lim_(xrarroo)(x+1)ln((2x+3)/(2x+1))
This can be rewritten as a quotient:
ln(L)=lim_(xrarroo)ln((2x+3)/(2x+1))/(1/(x+1))
Note that
ln(L)=lim_(xrarroo)(d/dxln((2x+3)/(2x+1)))/(d/dx(1/(x+1)))
Finding both of these limits individually:
d/dxln((2x+3)/(2x+1))=d/dxln(2x+3)-d/dxln(2x+1)
color(white)(d/dxln((2x+3)/(2x+1)))=2/(2x+3)-2/(2x+1)
color(white)(d/dxln((2x+3)/(2x+1)))=(2(2x+1)-2(2x+3))/((2x+3)(2x+1))
color(white)(d/dxln((2x+3)/(2x+1)))=(-4)/((2x+3)(2x+1))
d/dx(1/(x+1))=d/dx(x+1)^-1
color(white)(d/dx(1/(x+1)))=-(x+1)^-2d/dx(x+1)
color(white)(d/dx(1/(x+1)))=-(x+1)^-2
color(white)(d/dx(1/(x+1)))=-1/(x+1)^2
Then:
ln(L)=lim_(xrarroo)((-4)/((2x+3)(2x+1)))/(-1/(x+1)^2)
Rewriting:
ln(L)=lim_(xrarroo)(4(x+1)^2)/((2x+3)(2x+1))
Both the numerator and denominator have a degree of
ln(L)=1
Thus:
L=e^1=e
Explanation:
Now doing
knowing that